Optimization and Modeling of CuOx/OMWNT’s for Catalytic Reduction of Nitrogen Oxides by Response Surface Methodology

نویسنده

  • Mahnaz Pourkhalil Assistance Professor, Nanotechnology Research Center, Research Institute of the Petroleum Industry, Tehran, Iran
چکیده مقاله:

A series of copper oxide (CuOx) catalysts supported by oxidized multi-walled carbon nanotubes (OMWNT’s) were prepared by the wet impregnation method for the low temperature (200 °C) selective catalytic reduction of nitrogen oxides (NOx) using NH3 as a reductant agent in the presence of excess oxygen. These catalysts were characterized by FTIR, XRD, SEM-EDS, and H2-TPR methods. The response surface methodology was employed to model and optimize the effective parameters in the preparation of CuOx/OMWNT’s catalysts in NOx removal by NH3-SCR process. Three experimental parameters, including calcination temperature, calcination time, and CuOx loading were chosen as the independent variables. The central composite design was utilized to establish a quadratic model as a functional relationship between the conversion of NOx as a response factor and independent variables. The ANOVA results showed that the NOx conversion is significantly affected by calcination temperature and CuOx loading. At the optimal values of the studied parameters, the maximum conversion of NOx, 86.3 %, was obtained at a calcination temperature of 318 °C, a calcination time of 3.4 hr., and CuOx loading of 16.73 wt.%; the reaction conditions was as follows: T= 200 °C, P= 1 bar, NO = NH3 = 900 ppm, O2 = 5 vol.%, and GHSV = 30,000 hr.−1. The regression analysis with an R2value of 0.9908 revealed a satisfactory correlation between the experimental data and the values predicted for the conversion of NOx. The XRD and H2-TPR results of the best catalyst showed that the formation of CuO as the dominant phase of CuOx is the key factor in low temperature selective catalytic reduction (SCR) process.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

preparation and characterization of new co-fe and fe-mn nano catalysts using resol phenolic resin and response surface methodology study for fischer-tropsch synthesis

کاتالیزورهای co-fe-resol/sio2و fe-mn-resol/sio2 با استفاده از روش ساده و ارزان قیمت همرسوبی تهیه شدند. از رزین پلیمری resol در فرآیند تهیه کاتالیزور استفاده شد.

Modeling and Optimization of Arsenic (III) Removal from Aqueous Solutions by GFO Using Response Surface Methodology

Arsenic is a highly toxic element for human beings, which is generally found in groundwater. Dissolved Arsenic in water can be seen as As+3 and As+5 states. The adsorption process is one of the available methods to remove Arsenic from aqueous solutions. Thus, this papers aims at removing Arsenic (III) from aqueous solutions through adsorption on iron oxide granules. The relation among four inde...

متن کامل

Modeling and Optimization of Arsenic (III) Removal from Aqueous Solutions by GFO Using Response Surface Methodology

Arsenic is a highly toxic element for human beings, which is generally found in groundwater. Dissolved Arsenic in water can be seen as As+3 and As+5 states. The adsorption process is one of the available methods to remove Arsenic from aqueous solutions. Thus, this papers aims at removing Arsenic (III) from aqueous solutions through adsorption on iron oxide granules. The relation among four inde...

متن کامل

Optimization and Modeling of Microcystin-LR Degradation by TiO2 Photocatalyst Using Response Surface Methodology

Introduction: Microcystin-leucine arginine (MC-LR) is a toxin with harmful effects on the liver, kidney, heart, and gastrointestinal tract. So, effective removal of MC-LR from water resources is of great importance. The aim of this study was to remove microcystin-LR (MC-LR) from aqueous solution by Titanium Dioxide (TiO2). Materials and Methods: In the present study, TiO2, as a semiconductor, ...

متن کامل

optimization of nitrate reduction by electrocoagulation using response surface methodology

conclusions the results of this study show that it is possible to remove nitrate, and its intermediates from waste water. regarding the desirability of the process, the field scale study is proposed. results the results showed that by applying electric current of 0.14 a for 120 minutes, the nitrate content would reduce down to 97%. the obtained r2 for the nitrate removal model was higher than 0...

متن کامل

Response surface methodology for optimization of Phenol photo-catalytic degradation using Carbon-doped TiO2 nano-photocatalyst

In this research, Carbon-doped TiO2 nano-photocatalyst is synthesized via sol-gel technique and photo-catalytic degradation of phenol has been studied under ultraviolet and visible light irradiation in a fluidized bed reactor. Various techniques are used to characterize TiO2 nano-photocatalyst such as X-Ray Diffraction, Fourier transform infrared spectroscopy,  Energy Disp...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 8  شماره 1

صفحات  47- 59

تاریخ انتشار 2019-01-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023